

Switching operation

1 NC / 1 NO contact

2 NC contacts

2 NO contacts

Approvals

6041835107

D-A2 AH

(CK)

Replacement actuator: 3914350924

Special features / variants

(on request)

- With steel roller, various roller diameters
- Cranked or straight lever
- Different lever lengths
- Also available with following contacts:

3 NC contacts
2 NC / 2 NO contact

(3) © ©

Replacement actuator: $\mathbf{3 9 1 4 2 1 1 0 6 5}$

Special features / variants

(on request)

- Available for high temperature range
- With following contacts:

3 NC contacts 2 NC / 2 NO contact
(larger enclosure)

PW

(51) ©

Replacement actuator: -

Special features / variants

(on request)

- Also available with following contacts:

3 NC contacts
3 NO contacts
2 NC / 2 NO contact
(larger enclosure)

Overview of Actuators

Actuator	Designation	Collar iw = internal w = external	Plastic series			Metal series					
			COMBI	TINY 2	188	BIGGY 2	ENK	GCI	SN 2	ENM 2	DI
Plunger	-	iw	-	-	-	-	\bullet	-	-	-	-
	-	w	-	-	\bullet	\bullet	-	-	-	-	-
	-	IP 30	-	-	-	-	-	-	-	-	-
	-	IP 43	-	-	-	-	-	-	-	-	0
Ball	KU	iw	-	-	-	-	-	0	0	0	-
Mushroom head	P	w	-	-	-	-	-	-	-	-	-
Telescopic plunger	L	iw	-	-	-	-	-	-	O	0	-
Adjustable plunger	ST	w	-	-	-	-	-	\bullet	0	0	-
Plunger	ST	iw	-	-	-	-	-	\bullet	0	\bigcirc	-
	ST	IP 30	\bullet	-	-	-	-	-	-	-	-
Button	K	IP 30	\bullet	-	-	-	-	-	-	-	-
Roller	R	IP 30	\bullet	-	-	-	-	-	-	-	-
	R	iw	-	-	0	\bullet	-	\bullet	\bullet	\bullet	-
		w	-	-	-	-	-	-	-	-	-
		IP 43	-	-	-	-	-	-	-	-	\bigcirc
Roller, long	R ... L	iw	-	0	-	0	-	-	-	-	-
Roller, short	R ... K	iw	-	\bigcirc	\bullet	0	-	-	-	-	-
Lever	H	IP 30	\bullet	-	-	-	-	-	-	-	-
	H	w	-	-	-	-	-	-	-	-	-
	H, HT	iw	-	-	-	-	-	\bullet	0	0	-
Lever, long	H/D-WI	w	-	-	-	-	-	\bullet	\bullet	0	-
	HL	iw	-	-	-	-	-	\bullet	0	0	-
	HL/D-H	w	-	-	-	-	-	-	\bigcirc	\bigcirc	-
	D-H	IP 43	-	-	-	-	-	-	-	-	\bigcirc
Pivot joint, lever	DGH	w	-	0	-	0	0	0	-	-	-
Pivot joint, cranked lever	DGK	w	-	0	\bullet	0	0	0	\bullet	\bullet	-

Cranked lever	KN	iw	-	-	-	-	-	\bullet	\bigcirc	\bigcirc	-
	KN	w	-	0	-	0	-	-	0	\bigcirc	0
Cranked lever link	KG	iw	-	-	-	-	-	\bullet	0	\bigcirc	-
	KG	w	-	0	-	0	-	-	0	\bigcirc	-
Double roller	DR	iw	-	-	-	-	-	\bullet	0	\bigcirc	-
Spring feeler	FF	iw	-	-	-	-	-	\bullet	-	\bigcirc	-
	FF	w	-	\bullet	O	\bullet	\bullet	-	-	-	-
Spring feeler, long	FFL	w	-	-	-	-	-	\bullet	0	\bigcirc	-
Spindle-mounted lever	AH	iw	-	\bullet	-	\bullet	-	\bullet	0	\bigcirc	-
Spindle-mounted lever, star clamping	AHS	iw	-	\bullet	-	\bullet	-	0	\bullet	\bigcirc	-
Spindle-mounted lever, fine spline	AHS-V	iw	-	-	-	-	-	\bigcirc	-	-	-
Spindle-mounted lever for positive opening in forward / return direction	AHZ	iw	-	-	-	-	-	O	O	\bullet	-
Spindle-mounted lever, adjustable	AV	iw	-	\bullet	\bullet	\bullet	\bullet	\bullet	\bigcirc	\bullet	\bullet

Spindle-mounted lever, wire
Spindle-mounted lever, spring

[^0]	AD	iw	-	\bullet	\bullet	\bullet	\bullet	\bullet	0	\bullet	0
AF	iw	-	0	\bullet	0	0	\bullet	\bullet	0	-	

Approach direction	Plunger	Approach speed/approach angle							Remarks
			m / s	0,1	0,5	1	2	5	
$A^{\top} \Rightarrow{ }^{\circ}$	$\sqrt{6}$	Metal	A	20°	20°	10°	5°	-	- The values shown in the switching diagrams for switching travel/force refer to plunger direction
			B	20°	20°	10°	5°	-	
		Plastic	A	20°	20°	10°	5°	-	
				20°	20°	10°	5°	-	
	\wp	Metal	A	30°	5°		-	-	- The values shown in the switching diagrams for switching travel/force refer to plunger direction - Plunger tip adjustable in ST version
		Plastic	A	30°	5°	-	-	-	
			B	30°	5°	-	-	-	
	\sqrt{n}	Metal	A	30°	30°	20°	10°	5°	- The values shown in the switching diagrams for switching travel/force refer to plunger direction
			B	30°	30°	20°	10°	5°	
		Plastic	A	30°	30°	20°	10°	5°	
			B	30°	30°	20°	10°	5°	
$\overbrace{}^{8}$	\curvearrowleft	Metal	A	-	-	-	-	-	- The values shown in the switching diagrams for switching travel/force refer to plunger direction
			B	20°	20°	10°	-	-	
H		Plastic	A	-		-	-	-	
			B	40°	40°	30°	20°	10°	
-		Metal		-	-	-	-	-	- The values shown in the switching diagrams for switching travel / force refer to plunger direction - Adjustable upper section of actuator with roller
			B	20°	20°	10°	-		
9	V	Plastic	A	-	-	-	-	-	
			B	40°	40°	30°	20°	10°	
	\sqrt{n}	Metal	A	-	-	-	-	-	- The values shown in the switching diagrams for switching travel / force refer to $\mathbf{9 0}^{\circ}$ to plunger direction - Adjustable upper section of actuator with roller
			B	30°	30°	20°	10°	-	
		Plastic	A	-	-	-	-	,	
			B	40°	40°	40°	30°	20°	
Si	$\sqrt{6}$	Metal	A	-		-	-	-	- The values shown in the switching diagrams for switching travel / force refer to $\mathbf{9 0}^{\circ}$ to plunger direction
			B	30°	30°	20°	10°	-	
		Plastic	A	-	-	-	-		
		Plastic	B	40°	40°	40°	30°	20°	
	$\sqrt{\square}$	Metal	A	-	-	-	-	-	- The values shown in the switching diagrams for switching travel / force refer to plunger direction
			B	40°	40°	30°	20°	-	
		Plastic	A	-	-	-	-	-	
		Plastic	B	40°	40°	40°	30°	20°	
	\wp	Metal	A	45°	45°	40°	30°	-	- The values shown in the switching diagrams for switching travel / force refer to direction of rotation - Switch position retained after actuation
			B	45°	45°	40°	30°	-	
		Plastic	A	-	-	-	-	-	
		Metal	B	-	-	-	-		
	$\sqrt{\square}$		A	60° -	50 -	45° -	-	-	- The values shown in the switching diagrams for switching angle / actuation torque refer to any approach direction - Not suitable for personal protection
		Plastic	A	20°	20°	10°	5°	-	
			B	-	-	-	-	-	
$A)(0) B^{3}$	\sqrt{n}	Metal	A	45°	45°	45°	40°	30°	- The values shown in the switching diagrams for switching angle / actuation torque refer to direction of rotation - Graduated adjustment of roller lever on spindle with 180° repositioning
			B	45°	45°	45°	40°	30°	
		Plastic	A	45°	45°	45°	40°	30°	
			B	45°	45°	45°	40°	30°	
	$\sqrt{\square}$	Metal	A	45°	45°	45°	40°	30°	- The values shown in the switching diagrams for switching angle / actuation torque refer to direction of rotation
			B	45°	45°	45°	40°	30°	
		Plastic	A	45°	45°	45°	40°	30°	- Graduated adjustment of roller lever on spindle with 180° repositioning
			B	45°	45°	45°	40°	30°	
									- Not suitable for personal protection
A	\sqrt{n}	Metal	A	45°	45°	40°	30°	20°	- The values shown in the switching diagrams for switching angle / actuation torque refer to direction of rotation
			B	45°	45°	40°	30°	20°	
		Plastic	A	45°	45°	40°	30°	20°	- Graduate adjustment of rod about pivot axis and in longitudinal direction
			B	45°	45°	40°	30°	20°	
	$\sqrt{\eta}$	Metal	A	45°	45°	40°	30°	20°	- The values shown in the switching diagrams for switching angle / actuation torque refer to direction of rotation - Graduated adjustment of spring about pivot axis - Not suitable for personal protection
			B	45°	45°	40°	30°	20°	
		Plastic	A	45°	45°	40°	30°	20°	
			B	45°	45°	40°	30°	20°	

Limit Switch - Spindle-Mounted Lever

Switching devices with spindle-mounted lever enclosure

On delivery, contact-making takes place in both pivot directions corresponding to the switching diagrams.

Adaptation of basic actuator setting on spindle

The basic setting of the device can be varied in steps and fixed for exact positioning:

- AH, AHS, AHZ, AF, AD, AV:

Adjustment in steps of 15° (Fig. 1)

- AHS-V:

Adjustment in steps of 7.5° or 15° (only here Θ) by repositioning the intermediate piece (Fig. 2)

- Adaptation AV, AD:

Adjustment in radial direction

- AH, AHS, AHS-V, AHZ, AV: The roller levers can be used in a different axial actuating plane by repositioning by 180° (Fig. 3 and 4)

Adaptation of direction-independent switching function

With actuators AHS, AHS-V, AV, AD.

On delivery, contact-making takes place in both pivot directions corresponding to the switching diagrams. An idle function in the required pivot direction is achieved by simply repositioning the actuator cam (Fig. 5 and 6).

The idle function can be used in control systems that cannot process successive rebound pulses caused by oscillatory movement of extremely long AV/AD actuators.

Positive opening action
 Forward and return AHZ

For special safety applications, the positive opening action of the normally-closed contacts takes place both in forward (moving in one direction) as well as in return (moving back to home position) direction. For personal protection applications movement of the roller must be restrained in a guide block in both directions (Fig. 7 and 8).

Fig. 1

Fig. 3

Fig. 5

Fig. 7

Fig. 8

Fig. 2

Fig. 4

Fig. 6

Note on changing actuators AH, AHS, AHS-V, AHZ, AF, AD, AV, DGH, DGK

The guaranteed as-delivered properties change when the actuation directions are adjusted and when actuators are repositioned by 90°.

The user himself must ensure that the device achieves safe operation for its intended purpose.

Accessories for Insulation-Enclosed Limit Switches

The mounting plates help to prevent over-tightening and damage to the switch.

Article
Series
Article number

The Finger guard help to prevent the user from an electric shock.

The guide element allows additional support to the rear of the switch.

Article
Series
Article number

The mounting plate allows 188 switches to be din rail mounted in control enclosures.

Article
Series
Article number

188
3595900087

Finger guard

188, Biggy 2, ENK 3595900060

Mounting plate, control cabinet

Mounting pads
188
3191871157

Mounting pads
ENK
3191871154

Guide element
188
3515900209

-

Article
Series
Article number

Electrical data

Type 1 switches

Slow-action contact			C2 / Ti2							
Switching function	Switching contacts	Designation	U_{1}	Ithe	Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathbf{U}_{\mathbf{i}}$	$\mathrm{Ithe}^{\text {the }}$
Normally-closed contact	2NC	A2Z	250 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	6 mill.	250 V	10 A
Changeover contact	1NC/1S	U1Z	250 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL/gG}$	3×10^{6}	6 mill.	250 V	10 A
Changeover contact, overlapping	1NC/1S	UV1Z	-	-	-	-	-	-	-	-
Normally-open contact	25	E2	250 V	10 A	AC-15 Ue/Ie $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	-	-	-

Snap-action contact			C2 / Ti2							
Switching function	Switching contacts	Designation	U_{1}	Ithe	Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathbf{U i}_{\mathbf{i}}$	Ithe
Normally-closed contact	2NC	SA2Z	250 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	6 mill.	250 V	10 A
Changeover contact	$1 \mathrm{NC} / 1 \mathrm{~S}$	SU1Z	250 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	6 mill.	250 V	10 A
Normally-open contact	25	SE2	250 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	3×10^{6}	-	-	-

| Slow-action contact | | | | | | | Bi2 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Snap-action contact			Bi2							
Switching function	Switching contacts	Designation	$\mathrm{U}_{\mathbf{i}}$	$\mathrm{Ithe}^{\text {en }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathbf{U}_{\mathbf{i}}$	Ithe
Normally-closed contact	2NC	SA2Z	-	-	-	-	-	-	-	-
Changeover contact	1NC/NO	SU1Z	400 V	10 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $2 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill.	400 V	10 A
Normally-open contact	2 S	SE2	-	-	-	-	-	-	-	-

Slow-action contact			GC						$\mathbf{U i}_{\mathbf{i}}$	$\mathrm{Ithe}^{\text {the }}$
Switching function	Switching contacts	Designation	$\mathrm{U}_{\mathbf{i}}$	$\mathrm{Ithe}^{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d		
Normally-closed contact	2NC	A2Z	400 V	6 A	-	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	1×10^{5}	0,2 mill. ${ }^{\text {. }}$	400 V	10 A
Changeover contact	1NC / 1NO	U1Z	400 V	10 A	AC-15 $\mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill. ${ }^{2}$	400 V	10 A
Changeover contact, overlapping	1NC/ 1NO	UV1Z	400 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill.	-	-
Normally-open contact	2 S	E2	400 V	6 A	-	Fuse $6 \mathrm{AgL/gG}$	3×10^{6}	-	-	-
(1) 6021820175 GC-A2 HIW $=20$ million (2) 60121100622 GC-U1Z VKS, 6121100623 GC-U1Z VKW $=2$ million										
Snap-action contact			GC							
Switching function	Switching contacts	Designation	U_{1}	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathbf{U V}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$
Normally-closed contact	2NC	SA2Z	-	-	-	-	$-$	-	-	-
Changeover contact	1NC/ 1NO	SU1Z	400 V	10 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{l} \mathrm{e} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $2 \mathrm{AgL/gG}$	10×10^{6}	20 mill.	400 V	10 A
Normally-open contact	25	SE2	-	-	-	-	-	-	-	-

IF				188					
Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathbf{U}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d
AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	6 mill.	250 V	5 A	AC-15 Ue/le $240 \mathrm{~V} / 1.5 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	1×10^{6}	2 mill.
$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{l} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	6 mill.	250 V	10 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{le}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	10×10^{6}	20 mill.*
-	-	-	-	250 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	10×10^{6}	20 mill.
-	-	-	-	250 V	5 A	AC-15 U/ $/ \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 1.5 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	1×10^{6}	-
*6116819140 I88-U1Z KS, 6186103005 I88-U1Z W RAST $=2$ million									
IF				188					
Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathbf{U i}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d
AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	6 mill.	-	-	-	-	-	-
$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{l} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	3×10^{6}	6 mill.	250 V	10 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{le}_{2} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $2 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill.
-	-	-	-	-	-	-	-	-	-

ENK			
Utilization category	Short-circuit protection	Mechanical service life	B10d
		1×10^{6}	2 mill.
$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 1.5 \mathrm{~A}$	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	10×10^{6}	20 mill.*
$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	10×10^{6}	20 mill.
$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	-	-
-	-	-	

*6181135251 ENK-U1Z AHSGU RAST RO50 $=2$ million

ENK			
Utilization category	Short-circuit protection	Mechanical service life	B10d
-	-	-	-
$\mathrm{AC}-15 \mathrm{U} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse 2 A gL/gG	10×10^{6}	20 mill.
-	-	-	-

SN2				ENM2					
Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathbf{U}_{\mathbf{i}}$	Ithe	Utilization category	Short-circuit protection	Mechanical service life	B10d
$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill.	250 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	1×10^{6}	2 mill.
$\mathrm{AC}-15 \mathrm{U} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	-	20 mill.	400 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill.*
-	-	-	-	400 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill.
-	-	-	-	250 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	-
*6087135013 ENM2-U1Z AHS-V, 6087135030 ENM2-U1Z AHZ $=2$ million									
SN2				ENM2					
Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathbf{U}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d
-	-	-	-	250 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	6 mill.
$\mathrm{AC}-15 \mathrm{U} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $2 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill.	400 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $2 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill.
-	-	-	-	250 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	-

Electrical data

Type 1 switches

Slow-action contact			D					
Switching function	Switching contacts	Designation	U_{1}	$\mathrm{Ithe}^{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d
Normally-closed contact	2NC	A2Z	400 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill.
Changeover contact	$1 \mathrm{NC} / 15$	U1Z	400 V	10 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	10×10^{6}	20 mill.
Changeover contact, overlapping	$1 \mathrm{NC} / 1 \mathrm{~S}$	UV1Z	400 V	16 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill.
Normally-open contact	25	E2	400 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	10×10^{6}	-

Snap-action contact			D					
Switching function	Switching contacts	Designation	U_{1}	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d
			-	-	-	-	-	-
Normally-closed contact	2NC	SA2Z	-	-	-	-	-	-
Changeover contact	1NC/1S	SU1Z	400 V	10 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{l} \mathrm{e}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill.
Normally-open contact	2 S	SE2	-	-	-	-	-	-

Type 2 switches

Slow-action contact			SKT						$\mathbf{U}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$
Switching function	Switching contacts	Designation	U_{1}	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d		
Normally-closed contact	1NC	A1Z								
Normally-closed contact	2NC	A2Z	250 V	10 A	AC-15 $\mathrm{U}_{\mathrm{e}} / \mathrm{le}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$ DC-13 U $/$ /le $250 \mathrm{~V} / 0.27 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	$\begin{aligned} & A^{*} 1 \times 10^{6} \\ & B^{*} 1 \times 10^{5} \end{aligned}$	2 mill.	250 V	10 A
Changeover contact	1NC/1S	U1/U1Z	250 V	10 A	AC-15 $\mathrm{U}_{\mathrm{e}} / \mathrm{le}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$ DC-13 Ue/le $250 \mathrm{~V} / 0.27 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	$\begin{aligned} & \mathrm{A}^{*} \times 10^{6} \\ & \mathrm{~B}^{*} 1 \times 10^{5} \end{aligned}$	2 mill.	250 V	10 A
Changeover contact, overlapping	2NC/1S	UV15Z	250 V	5 A	-	-	-	-	250 V	5 A
							* $\mathrm{A}=$ Standard; $\mathrm{B}=$ Increased actuating force			

Slow-action contact			SK						$\mathbf{U i}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$
Switching function	Switching contacts	Designation	$\mathrm{U}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d		
Normally-closed contact		A1Z	-	-	-	-	-	-	-	-
Normally-closed contact	2NC	A2Z	250 V	10 A	AC-15 $\mathrm{U}_{\mathrm{e}} / \mathrm{I} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	1×10^{6}	2 mill.		
Changeover contact	1NC/1S	U1/U1Z	250 V	10 A	$\mathrm{AC}-15 \mathrm{U} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	1×10^{6}	2 mill.	250 V	10 A
Changeover contact, overlapping	2NC/1S	UV15Z	400 V	5 A	$\mathrm{AC}-15 \mathrm{U} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 1.5 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	1×10^{6}	2 mill.	-	-
Slow-action contact			ENM2							
Switching function	Switching contacts	Designation	$\mathrm{U}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathbf{U i}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$
Normally-closed contact	1NC	A1Z	-	-	-	-	-	-	-	-
Normally-closed contact	2NC	A2Z	400 V	10 A	AC-15 $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	1×10^{6}	2 mill.	400 V	6 A
Changeover contact	1NC/1S	U1/U1Z	400 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	1×10^{6}	2 mill.	400 V	10 A
Changeover contact, overlapping	2NC/1S	UV15Z	250 V	5 A	$\mathrm{AC}-15 \mathrm{U} / \mathrm{IL}_{\mathrm{e}} 240 \mathrm{~V} / 1.5 \mathrm{~A}$	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	1×10^{6}	2 mill.		

$\mathbf{U}_{\mathbf{i}} \quad$ Rated insulation voltage
$\mathbf{I}_{\text {the }} \quad$ Conventional thermal output from devices in enclosure

SKI				SKC					
Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathrm{U}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d
				250 V	5 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 1,5 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	1×10^{6}	2 mill.
AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	$\begin{aligned} & \mathrm{A}^{*} 1 \times 10^{6} \\ & \mathrm{~B}^{*} 1 \times 10^{5} \end{aligned}$	2 mill.	-	-	-	-	-	-
AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	$\begin{aligned} & A^{*} 1 \times 10^{6} \\ & B^{*} 1 \times 10^{5} \end{aligned}$	2 mill.	-	-	-	-	-	-
$\begin{aligned} & \mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{le}_{\mathrm{e}} 240 \\ & \mathrm{~V} / 1.5 \mathrm{~A} \end{aligned}$	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	$\begin{aligned} & A^{*} 1 \times 10^{6} \\ & \text { B }^{*} 1 \times 10^{5} \end{aligned}$	2 mill.	-	-	-	-	-	-
${ }^{*} A=$ Standard; $B=$ Increased actuating force									
188				ENK					
Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathbf{U}_{\mathbf{i}}$	$\mathrm{Ithe}^{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d
-	-	-	-	-	-	-	-	-	-
				400 V	10 A	AC-15 $\mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	1×10^{6}	2 mill.
AC-15 Ue/e $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	1×10^{6}	2 mill.	400 V	10 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	1×10^{6}	2 mill.
-	-	-	-	400 V	5 A	$\mathrm{AC}-15 \mathrm{U} / \mathrm{Il}_{\mathrm{e}} 240 \mathrm{~V} / 1.5 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	1×10^{6}	2 mill.

GC			
Utilization category	Short-circuit protection	Mechanical service life	B10d
-	-	-	-
$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{l} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	1×10^{6}	2 mill.
$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	1×10^{6}	2 mill.

Safety Switches with Separate Actuator

SKT

Safety switches with separate actuator are positive opening position switches. In terms of design, the switching element and actuator are separated. On actuation, the switching element and actuator are either brought together or separated. The positive opening NC contact is always open when the actuator is withdrawn. These switches are assigned to Type 2.

BERNSTEIN offers various versions of these Type 2 switches. The differences and advantages of the individual switch groups are outlined in the following.

The SKT is the smallest safety switch with a separate actuator. It is particularly suited for applications that require an extremely slim and short switch design. Its rotary head, two actuator openings and various switching functions underscore its versatility in extremely confined spaces.

Added to this, the SKT features other options to meet any requirements:

- Integrated eject function (FE):

The actuator is ejected if the door is not locked securely. Consequently, the safety contact is opened, thus preventing the machine from starting up. In addition, this function makes it apparent that the door still needs to be locked.

- Actuating force (up to $\mathbf{5 0} \mathbf{N}$):

The standard actuating force is 10 N . Depending on the switch variant, an actuating force of 50 N can also be selected. In many applications, hatches and doors need to be secured to prevent them being opened unintentionally. This is achieved by means of bolts, fasteners or other latching mechanisms. The SKI safety switch should be selected for applications requiring increased actuating force.

- Universal Hinged Actuator (MRU):

The MRU actuator is ideally suited for applications where the installation conditions severely restrict the actuating travel or radius. It has an adjustable actuating radius in the horizontal and vertical plane.

$\mathrm{R}_{\text {min }} 150 \mathrm{~mm}$
Actuating forces FE to FI50

Technical data

Electrical data	
Rated insulation voltage $\quad U_{i}$ max.	250 V
Rated operating voltage U_{e} max.	240 V AC
Conventional thermal current $\mathrm{I}_{\text {the }}$	10 A
Utilization category	AC-15, Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$; DC-13, $\mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 250 \mathrm{~V} / 0.27 \mathrm{~A}$
Mechanical data	
Switching frequency	$\leq 30 /$ min
Mechanical service life Standard Mechanical service life encreased actuator holding force	1×10^{6} switching cycles 1×10^{5} switching cycles
B10d (up to) ${ }^{\text {(1) }}$	2 Mill.
Short-circuit protection	Fuse 6 A gL/gG
Protection class	II, Insulated
Ambient temperature	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Protection class	IP 65 conforming to IEC/EN 60529
Type of connection	Screw connections
Conductor cross sections	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$
Enclosure	Thermoplastic, glass fibre-reinforced (UL94-V0)
Cable entry	M16 $\times 1.5$
Standards	
VDE 0660 T100, DIN EN 60947-1, IEC 60947-1 VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1	

SKI

The SKI is the slimline version of a safety switch with a separate actuator. It is based on the BERNSTEIN 88 family. Its dimensions, not including the actuating head, correspond to EN 50047.

The actuating head is rotary mounted and has two actuator openings. The SKI safety switch is predestined for installation on section structures and in applications with confined installation conditions. Compared to the SKT, it offers more connection space for the wiring and variants with up to three switching contacts available.

Other advantages of this series include:

- Integrated eject function (FE):

The actuator is ejected if the door is not locked securely. Consequently, the safety contact is opened, thus preventing the machine from starting up. In addition, this function makes it apparent that the door still needs to be locked.

- Actuating force (up to $\mathbf{5 0} \mathbf{N}$):

The standard actuating force is 10 N . Depending on the switch variant, an actuating force of 50 N can also be selected. In many applications, hatches and doors need to be secured to prevent them from being opened unintentionally. This is achieved by means of bolts, fasteners or other latching mechanisms. The SKI safety switch should be selected for applications requiring increased actuating force.

- Universal radius actuator (MRU):

The MRU actuator is ideally suited for applications where the installation conditions severely restrict the actuating travel or radius. It has an adjustable actuating radius in the horizontal and vertical plane.

$\mathrm{R}_{\text {min }}$ in setting directions 50 mm
Actuating forces FE to FI50

Technical data

Electrical data	
Rated insulation voltage $\quad \mathrm{U}_{\mathrm{i}}$ max.	250 V AC
Rated operating voltage $\quad \mathrm{U}_{\mathrm{e}} \mathrm{max}$.	240 V
Conventional thermal current (up to) ${ }^{(1)}$	10 A
Utilization category (up to) ${ }^{(1)}$	AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$
Mechanical data	
Switching frequency	$\leq 30 / \mathrm{min}$.
Mechanical service life Standard Mechanical service life encreased actuator holding force	1×10^{6} switching cycles 1×10^{5} switching cycles
B10d (up to) ${ }^{(1)}$	2 Mill.
Short-circuit protection	Fuse $6 \mathrm{AgL} / \mathrm{gG}$
Protection class	II, Insulated
Ambient temperature	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Protection class	IP 65 conforming to IEC/EN 60529
Type of connection	Screw connections
Conductor cross sections	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$
Enclosure	Thermoplastic, glass fibre-reinforced (UL94-V0)
Cable entry	$1 \times \mathrm{M} 20 \times 1.5$
Standards	
VDE 0660 T100, DIN EN 60947-1, IEC 60947-1 VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1	

Safety Switches with Separate Actuator

SK

The SK safety position switch is an industry standard and can be used in virtually any application.

Thanks to design safety features conforming to VDE 0660 T200, IEC 60947-5-1 and the test regulations GS-ET 15, the SK is particularly suitable for personal protection applications. Its versatility is enhanced by the variable actuator head and two actuator openings.

Other decisive advantages include:

- Different actuating forces:

Corresponding to your specific application, in addition to the standard 10 N , you can also choose an actuating force of 5,20 or 30 N .
Actuating forces from 30 to 100 N can be realised with the aid of additional components that are mounted on the outside of the switch.

- Anti-tamper facility:

The switching system is protected by multiple coding to ensure enhanced safety of your application.

- Outstanding handling:

With the two slots you can easily adjust the SK safety switch and lock it in position by means of the two holes accessible from the top or the two holes accessible from the front. The switch can be wired from three different sides. A transparent cover prevents foreign particles from entering the contact space while connecting the power supply cable.

 Actuator: metal

Technical data

SKC

In terms of lengths, the SKC safety position switch is the 15 mm shorter variant of the SK. This makes it the right choice for confined installation conditions.

The SKC otherwise offers the same advantages as the SK: Industrial standard with particular emphasis on safety, personal protection and a variable actuator head with two actuator openings.

Other decisive advantages include:

- Different actuating forces:

Corresponding to your specific application, in addition to the standard 10 N , you can also choose an actuating force of $5,20,30$ or 50 N .
Actuating forces from 30 to 100 N can be realised with the aid of additional components that are mounted on the outside of the switch.

- Anti-tamper facility:

The switching system is protected by multiple coding to ensure enhanced safety of your application.

- Outstanding handling:

With the two slots you can easily adjust the SKC safety switch and lock it in position by means of the two holes accessible from the top or the two holes accessible from the front. The switch can be wired from three different sides. A transparent cover prevents foreign particles from entering the contact space while connecting the power supply cable.

$\mathrm{R}_{\text {min }} 150 \mathrm{~mm}$ (5.9")
Actuator: Metal

Technical data

Safety Switches with Separate Actuator

SKT

Standard

6016419059
SKT-U1Z M3

2 NC contacts

1 NC / 1 NO contact
Overlapping

Switching operation
1 NC / 1 NO contact
NC contacts

Approvals

6016469066
 SKT-A2Z M3

SKI

(14) (18)

Special features / variants

 (on request)- Replacement actuator for: 3112850340

Special features / variants (on request)

- Replacement actuator for: Standard High actuating force Radius actuation

3112850340
3112850340
3911452058

[^0]: pindle-mounted lever, spring

