Safety Switches for Hinged Protective Equipment

GC vks

Slow-action Snap-action

2 NO contacts

Approvals

(3) © ©

Replacement actuator: 3912001277

Special features / variants
(on request)

GC VKW

Slow-action Snap-action

6121800835 GC-A2Z VKW

(8.) © ©

Replacement actuator: 3912001278

Special features / variants
(on request)

Notes

Contactless safety technology

To complement the extensive range of mechanical safety switches offered by BERNSTEIN, a new series of contactless safety switches is now available. These safety sensors ensure that safety doors and protective guards remain closed when danger is present.

The contactless safety technology offers the following advantages:

- Wear-free actuating
- Very easy to clean
- No actuator, therefore:
- No mechanical damage possible
- No hazards or restrictions caused by protruding actuator
- Switching function not affected by contaminants

BERNSTEIN offers two different technologies in the field of contactless safety technology:

- Safety sensors on magnetic basis, MAK series
- Safety sensors on RFID basis, CSMS series

Safety sensors CSMS

The CSMS can directly be connected to contactors or to an evaluation unit (dependent on the respective model). The RRS version integrates an evaluation of a return circuit and start button with direct connection to contactors. With the CSMS, PL e and SIL 3 is achieved.
This is the case with only one CSMS and also with series circuits with up to 32 sensors the case.

Product features

- Performance Level e
- Up to 32 series circuits without leaving the PLe
- Power supply 24 V DC
- High coding level corresponding to the draft DIN EN ISO 14119
- No need of any additional external monitoring (dep. on the type)
- Connection of return circuit and start button possible (dep. on the type)
- Output current up to 250 mA per safety output
- Large diagnostic possibility
- 3 LEDs for status information of the CSMS
- Switching distance: 13 mm
- Dimensions: $110 \mathrm{~mm} \times 30 \mathrm{~mm} \times 15 \mathrm{~mm}$
- IP 67

Safety sensors MAK

To achieve a PL or SIL value with the MAK safety sensors, it is necessary to connect them to a safety evaluation unit. The magnetic safety sensors are dual channel versions. The evaluation unit (BERNSTEIN designation: MÜZ) monitors the correct switching of the two MAK channels and a defined time window in which the two channels must switch.

With the combination of MAK and MÜZ, a PL D and a SIL 3 can be reached. Besides the 3 different types of magnetic safety switches, BERNSTEIN also offers two different evaluation units.

Product features

- Performance Level d
- Redundancy with NO and NC contacts
- Switching distance: 6 mm
- IP 67

Comparison CSMS - MAK

Product characteristics	CSMS	MAK
Operating principle	elektro-magnetic, RFID	magnetic, Reed
Safety parameters	PLe, SIL3	PL d, SIL 3
Safety outputs	electrical outputs	mechanical contacts
Can be switched in series	yes, when a constant safety level is guaranteed	yes, with falling safety level
Evaluation unit required	no	yes
Actuator coding	high	low
Sensing distance	13 mm	$3-4 \mathrm{~mm}$
Diagnostic interface	via LED and electronically	no
Mechanical sensitivity	low	very high
Approach possibility of the actuator	4	1
Safety outputs	2	1
Return circuit evaluation	yes	partially (depending on the evaluation unit)
Start button monitoring	yes	partially (depending on the evaluation unit)

The CSMS is a future-proofed safety product. The CSMS is a contactless safety sensor that uses RFID technology. It can be used as a single device as well as being connected in series up to PL e and SIL 3. BERNSTEIN offers two general product versions.

- CSMS-...-RRS... 1

With this product version, safety sensors can be connected to contactors without using an evaluation device. The product has an integrated evaluation of the return circuit and allows connection of a start button.

- CSMS-...-R... (2

This product version can be connected to a safety evaluation unit. Optionally, another safety sensor can be connected to the first CSMS with OSSD output (e.g. light curtains).

Both versions have extensive diagnostic capabilities. This is transmitted over a communication channel to a diagnostic device. This is displayed via PNP outputs if the CSMS is opened or closed. Moreover, it is possible to obtain information about the system and the sensor via integrated LEDs.

In order to ensure a particularly high manipulation protection (according to draft DIN EN ISO 14119), each sensor is assigned to one actuator. Thus, it is ensured that the CSMS cannot be "tricked" with different actuators.

The fast and accurate connection of the CSMS is realised by M12 connector cables and T-pieces.

- CSMS-...-A... 3

This product version allows a direct connection of several safety sensors to the safety controller by parallel wiring.

Connection example

T-Adapters to be used

Versions	Start function	1.T-Adapter	Following T-Adapter
Version RRS	Manual start	Grey	Black
Version R	Automatic start	Black	Black

Application examples

(1) CSMS

Series circuits without additional evaluation

(3) CSMS

Parallel connection to a safety controller

According to ISO 14119, interlocking devices are mechanical or electrical devices which are designed to prevent the operation of a machine element for as long as the movable safety guard is left open.

The CSMS based on RFID is contactless and fulfils the highest requirement (high-level coding) of protection against manipulation of ISO 14119.

The BERNSTEIN CSMS offers both a high-level coding and a low-level coding, in order to provide the optimum protection against manipulation for each application.

The safety-related capacity of the CSMS is demonstrated through full observation of the following standards:

- Requirements for safety-related parts of control systems up to PL e in accordance with ISO 13849-1
- Functional safety up to SIL $\mathbf{3}$ in accordance with IEC 62061
- Choice and use of safety-related interlocking devices of type 4 in accordance with ISO 14119

unicode/high coding:

Sensor accepts only one actuator multicode/low coding:
Sensor accepts several actuators

CSMS-SET-RRS-H-ST

ST M12 connector KA Cable
H High-level coding (unicode)
L Low-level coding (multicode)
RRS Serial connection, with evaluation of a return circuit R Serial connection, without evaluation of a return circuit A Stand-Alone application, without evaluation of a return circuit
SET Set, comprising the master and slave
M Master
S Slave
CSMS Contactless Safety Monitoring Sensor

To achieve the stated sensing distances on metal substrates, CSMS spacers must be used.

CSMS-RRS
 with evaluation of a return circuit

Advantages

- Individual CSMS or safe serial connection with max. 32 CSMS up to PLe
- Manual or automatic start
- No external safety evaluation unit required
- Uni- or multi-coding
- Integrated evaluation of a return circuit and start button with direct connection to contactors

Unicode	Multicode	M12 connector	2 m cable + M12 connector	Article number	Designation
X			x	6075988057	CSMS-SET-RRS-H-KA
x		x		6075988058	CSMS-SET-RRS-H-ST
	x	x		6075988066	CSMS-SET-RRS-L-ST
	X		x	6075988068	CSMS-SET-RRS-L-KA
x			x	6075985048	CSMS-M-RRS-H-KA
x		x		6075986050	CSMS-M-RRS-H-ST
	x		x	6075985061	CSMS-M-RRS-L-KA
	x	x		6075986062	CSMS-M-RRS-L-ST
Replacement actuator Multicode				6075980065	CSMS-S-L
Replacement actuator Unicode				6075980052	CSMS-S-H*

*Must be taught in with 6075989056 (CSMS SLAVE TEACHADAPTER) for the master.

CSMS-R

for the connection to a safety evaluation unit

Advantages

- Safe serial connection with max. 32 CSMS up to PLe
- Connection to an external safety evaluation unit for ex. SCR ON
- Optional: Connection of a safety sensor (for ex. safety light curtain) with OSSD output to the first CSMS
- Uni- or multi-coding

Unicode	Multicode	M12 connector	2 m cable + M12 connector	Article number	Designation
x			x	6075988059	CSMS-SET-R-H-KA
x		x		6075988060	CSMS-SET-R-H-ST
	x	x		6075988067	CSMS-SET-R-L-ST
	x		x	6075988069	CSMS-SET-R-L-KA
x			x	6075985049	CSMS-M-R-H-KA
x		x		6075986051	CSMS-M-R-H-ST
	x		x	6075985063	CSMS-M-R-L-KA
	x	x		6075986064	CSMS-M-R-L-ST
Replacement actuator Multicode				6075980065	CSMS-S-L
Replacement actuator Unicode				6075980052	CSMS-S-H*

*Must be taught in with 6075989056 (CSMS SLAVE TEACHADAPTER) for the master.

CSMS-A

for direct connection to a control unit

Advantages

- Up to PLe / SIL 3
- Multi-coding
- Compact construction
- Connection to an external safety evaluation unit for ex. SCR ON

Unicode	Multicode	M12 connector	$\mathbf{2 ~ m}$ cable	Article number	Designation
x	x		6075988072	CSMS -SET-A-L-ST	
x		x	6075988073	CSMS -SET-A-L-KA	
x	x	6075985070	$\mathrm{CSMS}-\mathrm{M}-\mathrm{A}-\mathrm{L}-\mathrm{KA}$		
x	x		6075986071	$\mathrm{CSMS}-\mathrm{M}-\mathrm{A}-\mathrm{L}-\mathrm{ST}$	
Replacement actuator Multicode		6075980065	CSMS -S-L		

CSMS diagnosis

The CSMS product family offers one of the largest diagnostic options on the market. Opened protective devices or actuators in the transitional area as well as system failures can be rapidly and precisely identified. Due to the optional diagnostic devices, the status of each CSMS appears in the security chain.

- Status display of each CSMS in the security chain
- Electronical outputs or bus interface

CSMS Standard Diagnosis

The CSMS Standard Diagnosis has 8 or 16 electronic outputs. Each output is assigned to one CSMS. It is possible to switch on the output, even at the maximum operating distance. The output is switched on by dip switches on the diagnostic device. In maximum system conception, the status of all 32 CSMS can be displayed simply by cascading the diagnostic devices.

CSMS Diagnosis Profibus

The CSMS Diagnosis Profibus with Profibus interface ensures the direct transmission of the diagnostic information from each CSMS to the control unit.
Advantages include considerably reduced wiring expenses, a clearer arrangement and a substantially higher functionality.
As well as protective devices in an open position or in the transitional area, attempts to tamper with the machine and system errors can also be detected.
The machine down time can be reduced to a minimum by the extensive diagnostic options.
Further bus systems on request.

Parallel connection

Article number	Designation	Description
6075989031	CSMS DIAGNOSE STANDARD 8	Diagnosis for 8 CSMS
6075989032	CSMS DIAGNOSE STANDARD 16	Diagnosis for 16 CSMS
6075989033	CSMS DIAGNOSE PROFIBUS	Profibus Gateway

Safety Magnetic Controllers

Magnetic controllers for safety functions

BERNSTEIN offers magnetic controllers for safety functions that fulfill performance level d according to EN 13849-1 and SIL 3 according to EN 61508 or rather EN 62061.

A safety system consists of the safety magnetic controllers and a coded transducer unit.

The anti-tamper security of the transducer unit is achieved by variable coding of the actuator magnets and magnetic switches.

Depending on the type of device, one or two coded transducer units (magnetic switch with corresponding magnet) of type:

- MAK-4236
- MAK-5236
- MAK-5336
can be connected to and monitored by the safety magnetic controllers.

The safety magnetic controller processes the NC or NO contact signals coming from the coded magnetic switches. Thereby, it is possible to detect the opening of the safety guard (door, hatch, protective hood etc.) and to turn off the safety output. Thanks to the redundant evaluation, the magnetic controller is switched to the "safe state" should a fault or manipulation occur, or if the time difference is exceeded between the NC contact signal and the NO contact signal. An LED indicates that the safety magnetic controller is in the "safe state".

To ensure fault detection of the switch-off device, the MÜZ-102 offers the possibility to connect a return circuit. The system additionally features a NC contact for signalling purposes.

- Redundancy by NO and NC contacts
- Manipulation safety by coding
- Monitoring of the return circuit (depending on device type)

MAK-4236-x with magnet TK-42-CD

MAK-5236-x with magnet TK-52-CD / 2

MAK-5336-x with magnet TK-43-CD

Safety Magnetic Controllers

Magnetic controllers for safety functions

TÜV certified

- EN ISO 13849-1 Performance Level d
- EN 61508 and EN 62061 SIL 3
- EN 60947-5-3 Single fault security S

Coded transducer units

Magnetic switches

Type designation
Article number
Cable length
Type designation
Article number
Cable length
Type designation
Article number
Cable length
Type designation
Article number
Cable length

Ambient conditions	
Temperature range	$\mathrm{min} / \mathrm{max}$
Protection class (to IEC 529, EN 60529)	
Enclosure material	
Sensing distance	S on
	S on

Actuating magnet

Type designation
Article number
Use: safety magnetic controller
Article number

All dimensions in mm
Other types available on request.

(© $^{\text {BERNSTEIN }}$

Safety Rope Pull Switches

SRM, SR

General information on safety rope pull switches

The series SR and SRM safety rope pull switching devices developed and manufactured by BERNSTEIN AG are designed and approved in accordance with the standards IEC 947-5-5, DIN EN 60947-5-5 and ISO 13850, i.e. on actuation or in the event of cable breakage, the emergency stop switching device locks automatically and can only be reset to its initial setting by means of the resetting device on the switch.

In order for the overall system to conform to the standards EN 60947-5-5 and EN 13850 governing the emergency stop function of rope pull switches it is necessary to integrate a spring in the system. The reasoning behind this requirement is that a person who triggers the emergency stop functions does not need to consider the activation direction. With the spring it is possible to pull the cable in the direction of the rope pull switch, thus activating the emergency stop function.

Safety rope pull switches may only be used in control power circuits. Safety rope pull switches are used on accessible sides of conveyor systems or machines. In contrast to Emergency Stop switching devices (e.g. mushroom pushbuttons) installed at intervals, with which the emergency stop signal can only be generated at the device itself, with the safety rope pull switch it is possible to generate the signal at any point in a section. Depending on the type of switching device, a span of up to 75 m can be achieved with a pull cable connected to the pulling element.

The maximum possible span length of a pull cable switch is always dependent on the temperature fluctuations to which the system is exposed. It is possible that the pull cable switch may trip due to the fact that, owing to its temperature coefficient, the length of the steel cable can change in response to changes in temperature. Ultimately, this change in length is dependent on the length of the cable, the difference in the temperature change and the type of springs used in the pull cable switch. Overview 1 shows which cable lengths are possible as a function of change in temperature.

Pull cable counterspring

With overstretch safeguard based on compression spring principle

Application		
Type	SR...100/SR ...175/SRM ...175	SR ...300/SRM ...300
Spring Art. No.	$\mathbf{3 9 1 1 0 4 2 1 5 3}$	$\mathbf{3 9 1 1 0 4 2 1 5 4}$
$L_{0 \text { min. }}$	383	483
$L_{\text {max. }}$	487	653

Advantages of SRM / SR safety rope pull switches:

- The SR (plastic enclosure) and SRM (metal enclosure) safety rope pull switches are available with the Quickfix quick-connect system, which renders unnecessary cable eye stiffeners, cable grips and turnbuckles that are otherwise required for mounting the cable. Added to this, the time required to install the cable is drastically reduced. Versions with a conventional eye are, of course, also available.
- All variants of the SRM and especially of the SR are equipped with an integrated emergency stop impact button that can be actuated by pressing in hazardous situations. In the same way as pulling the pull cable, the safety contacts are opened and the switch is locked.
- The type SRM...E-... safety rope pull switches are optionally available with a remote indicator for monitoring the cable tension. This option has an integrated sensor unit that monitors situations in which the cable tension may overshoot or undershoot the permissible value, or triggering of the safety rope pull switch is imminent.

This electronic output signals in good time that maintenance / adjustment is required otherwise the machine will shut down. This output can also be used for event signalling purposes or optionally available indicator lamps can be connected. This connection configuration conforms to "preventative maintenance" requirements.

- During installation / adjustment of the cable span, the correct tension of the cable can be checked through the integrated inspection window. To ensure optimum cable tension as part of the adjustment procedure, the tips of the indicator arrows should be aligned with the marking.
- A second inspection window integrated in the SRM version makes it possible to check the status of the locking function and of the contacts. Yellow in the inspection window indicates that the safety rope pull switch is locked. Green in the inspection window indicates that the rope pull switch is ready for operation and the cable assembly is monitored.

Overview 1

The parameter 100, 175 and 300 in the product designation indicates the force of the springs used in the rope pull switch. It should be noted that a greater actuating force is required for higher spring forces.

The indications of the temperature ranges refer to a system for emergency stop applications with return spring.
With a system without return spring, emergency stop applications are not permitted. In this case, the above mentioned Kelvin values have to be halved.

Installation example

Safety Rope Pull Switches

Max. span length
(

Quickfix
(Dimensioned drawing 1)

Eye
(Dimensioned drawing 2)

Quickfix
with remote monitoring
(Dimensioned drawing 1)

Eye
with remote monitoring
(Dimensioned drawing 2)

Approvals

75 metres (Dimensioned drawing 1)

2 Ö/2S

6012929087

SRM-U1Z/U1Z-QF-300

6012999096

SRM-A2Z/U1Z-QF-300
6012929085 SRM-U1Z/U1Z-QF-175

6012999094
SRM-A2Z/U1Z-QF-175

6012921091

SRM-U1Z/U1Z-LU-300

6012929088

SRM-U1Z/U1Z-QF-300-E

6012999097

 SRM-A2Z/U1Z-QF-300-E

2 Ö/2S
3 Ö/1S

6012929086
SRM-U1Z/U1Z-QF-175-E

6012999095 SRM-A2Z/U1Z-QF-175-E

(18)

Technical data

Electrical data		
Rated insulation voltage	U_{i} max.	250 V
Rated operating voltage	$U_{\mathrm{e}} \mathrm{max}$.	240 V
Conventional thermal current	$1{ }_{\text {the }}$	10 A
Utilisation category	$\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}}$	AC-15
Short-circuit protection		6 Ag
Protection class		1
Mechanical data		
Enclosure	Aluminium pressure die-casting	
Ambient temperature	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	
Mechanical service life	1×10^{5}	
Switching frequency max.	$\leq 20 / \mathrm{min}$.	
Mounting	$4 \times \mathrm{M6}$ or $4 \times \mathrm{M} 5$	
B10d	0.2 mill.	
Type of connection	Screw connections	
Conductor cross sections	Single-wire 0.5-1.5 mm ${ }^{2}$	
Cable entry	$3 \times \mathrm{M} 20 \times 1.5$	
Protection class	IP 67 conforming to IEC/EN 60529	
Standards		
VDE 0660 T100, DIN EN 60947 VDE 0660 T200, DIN EN 60947 VDE 0660 T210, DIN EN 60947 ISO 13850		

Contact type	1 NC/1 NO (Zb)		2 NC (Zb)	
Action contacts	U1Z		A2Z	
Circuit symbol	Slow-action contacts	Θ	Slow-action contacts	
Switching diagram				
On \square OFF		$175 N / 300 \mathrm{~N}$ Rastung / Latch / Verrouillage $-133 N / 228 N$ Rastung / Latch / Verrouillage $-91 \mathrm{~N} / 156 \mathrm{~N}$		

The pulling force data depend on the type of switch used. (SRM...175/SRM...300)
Tolerances: Switching point + / - 0.5 mm , actuating force + / - 15%

Safety Rope Pull Switches

Technical data

25 metres (Dimensioned drawing 3)

2 NC/ 2 NO
4 NC

$6011629070 \quad 6011691080$

SR-U2Z-0-QF-100-LO-0-0 SR-A4Z-0-QF-100-LO-0-0

6011621064

6011691074

SR-U2Z-0-LU-100-L0-0-0 SR-A4Z-0-LU-100-L0-0-0

Double-Spanned Rope Pull Switches

SiRK, Si1, Si2

BERNSTEIN double-spanned rope pull switches (SiRK, Si1 and Si2) are also used in emergency stop applications. When the cable is pulled the switching lever is deflected in the corresponding direction and the system shut down.

The switches are available in two metal versions, the Si1 and Si2, as well as an insulation-enclosed version, the SiRK.

These types of rope pull switch are ideally suited for applications with high temperature fluctuations and long cable spans. With their sturdy enclosure, the Si 1 and Si 2 are the perfect switches for harsh environments.

Two cables spanned in opposite directions are attached to the switching device. The countersprings are secured to the wall at the ends of the cables. Provided the change in temperature is the same at all points along the cable, the springs will effectively compensate for the change in cable length.

Product selection

Designation	Article number	Max. span length
SI1-U2Z AK R-RAST	$\mathbf{6 0 1 4 7 3 5 0 0 1}$	$2 \times 50 \mathrm{~m}$
SI1-U1Z/U1Z AK R-RAST	$\mathbf{6 0 1 4 7 3 5 0 2 5}$	$2 \times 50 \mathrm{~m}$
SI2-U2Z AK R-RAST	$\mathbf{6 0 1 5 7 3 5 0 0 2}$	$2 \times 50 \mathrm{~m}$
	$\mathbf{6 0 1 5 6 2 5 0 0 1}$	$2 \times 75 \mathrm{~m}$
SIRK-U2Z R		

Technical data	SiRK	Si1	Si2
Electrical data			
Rated insulation voltage $\quad U_{i}$	250 V AC	250 V AC	400 V AC
Rated operating voltage U_{e}	240 V	250 V	240 V
Conventional thermal current$I_{\text {the }}$	10 A	10 A	10 A
Utilisation category	AC 15, A $300240 \mathrm{~V} / 3 \mathrm{~A}, 120 \mathrm{~V} / 6 \mathrm{~A}$ DC 13, Q300 $250 \mathrm{~V} / 0.27 \mathrm{~A}, 125 \mathrm{~V} / 0.55 \mathrm{~A}$	AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{I} \mathrm{e} 240 \mathrm{~V} / 3 \mathrm{~A}$	AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{le}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$
Positive opening action Θ	as per IEC/EN 60947-5-1, Addendum K	as per IEC/EN 60947-5-1, Addendum K	as per IEC/EN 60947-5-1, Addendum K
Short-circuit protection	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$
Protection class	II, Insulated	1	1
Mechanical data			
Enclosure	ABS	Aluminium sand casting	Cast iron
Cover	ABS	Aluminium sand casting	Cast iron
Actuation	Lever, plastic (glass fibre-reinforced)	Lever (GRP)	Lever (GRP)
Ambient temperature	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Contact type	$2 \mathrm{NC} / 2$ NO contact (Zb)	$2 \mathrm{NC} / 2$ NO contact (Zb)	$2 \mathrm{NC} / 2$ NO contact (Zb)
Mechanical service life (up to) ${ }^{(1)}$	1×10^{5} switching cycles	1×10^{6} switching cycles	1×10^{6} switching cycles
Switching frequency max.	Max. 30/min.	$\leq 10 / \mathrm{min}$.	$\leq 10 / \mathrm{min}$.
Mounting	$2 \times \mathrm{M} 8$	$4 \times \mathrm{M} 8$	$4 \times \mathrm{M} 8$
B10d (up to) ${ }^{\text {(1) }}$	0,2 mill.	2 mill.	2 mill.
Type of connection	8 Screw connections (M3, 5)	8 Screw connections (M3,5)	8 Screw connections (M3, 5)
Conductor cross sections	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$
Cable entry	$2 \times \mathrm{M} 20 \times 1.5$	$1 \times \mathrm{M} 20 \times 1.5$	$3 \times \mathrm{M} 20 \times 1.5$
Weight	$\approx 0.8 \mathrm{~kg}$	$\approx 1.62 \mathrm{~kg}$	$\approx 4.21 \mathrm{~kg}$
Installation position	Any	Any	Any
Protection class	IP 65 conforming to EN 60529	IP 65 conforming to EN 60529	IP 65 conforming to EN 60529
Standards			
VDE 0660 T100, DIN EN 60947-1, VDE 0660 T200, DIN EN 60947-5-	$\begin{aligned} & 0947-1 \\ & 60947-5-1 \end{aligned}$		

(1) Depending on switching system. See Table on Pages 70-73.

Double-Spanned Rope Pull Switches

(5)BERNSTEIN

SI2

400 V AC
240 V
10 A
AC-15, $240 \mathrm{~V} / 3 \mathrm{~A}$
©

Standard Rope Pull Switches

With and Without Latching Function

Because of their specifications governed by corresponding standards (see Cable Safety Pull Switches SRM/SR), these cable pull switches are used exclusively as safety command devices.

These switches are available in metal enclosures as well as in insulation-enclosed versions. They are operated manually by pulling on the attached cable.

Thanks to their pretension, these switches, which feature a switching contact with overlap, execute a switching function when the cable is pulled or in the event of cable breakage.

The field of application for these rope pull switches includes

- Opening and closing of (garage) doors
- Starting machines
- Issuing commands in production processes

The basic design of the standard rope pull switches is based on that of position switches.

The specified cable length refers to the maximum length at minimum temperature variation. The maximum cable length may decrease under different environmental conditions.

Technical data		SEK	SiEK	SEM2	SiEM2
Electrical data					
Rated insulation voltage	U_{i}	400 V AC	400 V AC	400 V AC	400 V AC
Rated operating voltage	$U_{\text {e }}$	240 V	240 V	240 V	240 V
Conventional thermal current	$\mathrm{I}_{\text {the }}$	10 A	10 A	10 A	10 A
Utilisation category	$\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}}$	AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{le} 240 \mathrm{~V} / 3 \mathrm{~A}$	AC-15, Ue $/ \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	AC-15, Ue $/ \mathrm{l}$ e $240 \mathrm{~V} / 3 \mathrm{~A}$	AC-15, Ue $/ \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$
Mechanical data					
Switching frequency max.		$\leq 50 / \mathrm{min}$.	max. 100/min.	max. 50/min.	max. 50/min.
Mechanical service life		1×10^{6} switching cycles			
B10d		on request	on request	on request	on request
Short-circuit protection		Fuse $10 \mathrm{AgL} / \mathrm{gG}$	Fuse $10 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	Fuse $10 \mathrm{AgL/gG}$	Fuse $10 \mathrm{AgL/gG}$
Protection class		II, Insulated	II, Insulated	1	1
Ambient temperature		$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$			
Protection class		IP 65 conforming to IEC/EN 60529	IP 65 conforming to EN 60529	IP 65 conforming to EN 60529	IP 65 conforming to EN 60529; DIN VDE 0470 T1
Type of connection		4 Screw connections (M3,5)	4 Screw connections (M3, 5)	4 Screw connections (M3,5)	Screw connections
Conductor cross sections		Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$
Enclosure		Thermoplastic, glass fibre-reinforced	Thermoplastic, glass fibre-reinforced	Aluminium pressure die-casting	Aluminium pressure die-casting
Cable entry		$1 \times \mathrm{M} 20 \times 1.5$			
Standards					
VDE 0660 T100, DIN EN 6094 VDE 0660 T200, DIN EN 6094	$\begin{aligned} & 77-1, \mathrm{IEC} \\ & 77-5-1,1 \end{aligned}$	$\begin{aligned} & \text { 60947-1 } \\ & =C \text { 60947-5-1 } \end{aligned}$			

Technical data		SD	SiD	SIN
Electrical data				
Rated insulation voltage	U_{i}	400 V AC	400 V AC	400 V AC
Rated operating voltage	U_{e}	240 V	240 V	240 V
Conventional thermal current	$\mathrm{I}_{\text {the }}$	16 A	16 A	10 A
Utilisation category	$\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}}$	AC-15, Ue $/ \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{Il} 240 \mathrm{~V} / 3 \mathrm{~A}$	AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{I} \mathrm{e} 240 \mathrm{~V} / 3 \mathrm{~A}$
Mechanical data				
Switching frequency max.		$\leq 20 / \mathrm{min}$.	max. 20/min.	$\leq 20 / \mathrm{min}$.
Mechanical service life		1×10^{6} switching cycles	1×10^{6} switching cycles	1×10^{6} switching cycles
B10d		on request	on request	on request
Short-circuit protection		Fuse $10 \mathrm{AgL/gG}$	Fuse $10 \mathrm{AgL/gG}$	Fuse $10 \mathrm{AgL/gG}$
Protection class		1	1	1
Ambient temperature		$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Protection class		IP65 conforming to EN 60529	IP65 conforming to EN 60529	IP65 conforming to EN 60529
Type of connection		Screw connections	Screw connections	Screw connections
Conductor cross sections		Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$
Enclosure		Aluminium pressure die-casting	Aluminium pressure die-casting	Aluminium pressure die-casting
Cable entry		$2 \times \mathrm{M} 20 \times 1.5$	$2 \times \mathrm{M} 20 \times 1.5$	$2 \times \mathrm{M} 20 \times 1.5$
Standards				
VDE 0660 T100, DIN EN 60947-1, IEC 60947-1 VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1				

Standard Rope Pull Switches

